Time-resolved SAXS using continuous-flow microfluidic mixers
نویسندگان
چکیده
منابع مشابه
Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam
Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynam...
متن کاملMicrofluidic 3D Helix Mixers
Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a ch...
متن کاملContinuous Flow Microfluidic Bioparticle Concentrator
Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized p...
متن کاملMeasurement of enzyme kinetics using a continuous-flow microfluidic system.
This paper describes a microanalytical method for determining enzyme kinetics using a continuous-flow microfluidic system. The analysis is carried out by immobilizing the enzyme on microbeads, packing the microbeads into a chip-based microreactor (volume approximately 1.0 nL), and flowing the substrate over the packed bed. Data were analyzed using the Lilly-Hornby equation and compared to value...
متن کاملRapid droplet mixers for digital microfluidic systems.
The mixing of analytes and reagents for a biological or chemical lab-on-a-chip is an important, yet difficult, microfluidic operation. As volumes approach the sub-nanoliter regime, the mixing of liquids is hindered by laminar flow conditions. An electrowetting-based linear-array droplet mixer has previously been reported. However, fixed geometric parameters and the presence of flow reversibilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Crystallographica Section A Foundations and Advances
سال: 2018
ISSN: 2053-2733
DOI: 10.1107/s010876731809551x